Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1999, Volume 5, Issue 3, Pages 943–945 (Mi fpm409)  

This article is cited in 3 scientific papers (total in 3 papers)

Short communications

Symplectic groups over Laurent polynomial rings and patching diagrams

V. I. Kopeiko

Kalmyckia State University
Full-text PDF (153 kB) Citations (3)
Abstract: In this note we prove the following result. Let $A$ be a P.I.D. such that $\operatorname{K}_1\operatorname{Sp}(A)=0$. Then the groups $\operatorname{Sp}_{2r}(A[X_1^{\pm1},\ldots,X_n^{\pm1},Y_1,\ldots,Y_m])$ are generated by elementary symplectic matrices for all integers $r\geq2$.
Received: 01.05.1996
Bibliographic databases:
Document Type: Article
UDC: 512.666
Language: Russian
Citation: V. I. Kopeiko, “Symplectic groups over Laurent polynomial rings and patching diagrams”, Fundam. Prikl. Mat., 5:3 (1999), 943–945
Citation in format AMSBIB
\Bibitem{Kop99}
\by V.~I.~Kopeiko
\paper Symplectic groups over Laurent polynomial rings and patching diagrams
\jour Fundam. Prikl. Mat.
\yr 1999
\vol 5
\issue 3
\pages 943--945
\mathnet{http://mi.mathnet.ru/fpm409}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1806868}
\zmath{https://zbmath.org/?q=an:0963.20027}
Linking options:
  • https://www.mathnet.ru/eng/fpm409
  • https://www.mathnet.ru/eng/fpm/v5/i3/p943
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:275
    Full-text PDF :139
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024