Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1999, Volume 5, Issue 3, Pages 937–941 (Mi fpm408)  

Short communications

About correctness of the Dirichlet problem for a multivariate elliptic system with varying coefficients

G. A. Isaeva

Irkutsk State University
Abstract: The property of a system of partial differential equations with variable coefficients to belong to one or another homotopic type depends on the domain point at which this system is considered. The degeneration manifolds split the original region into parts. The study of the influence of such degeneration on the solvability character of the boundary value problems is important [1]. We consider the system of $n$ partial second order differential equations
$$ -\Lambda(x)\Delta u_j+\mu\frac{\partial}{\partial x_j} \sum_{i=1}^{n}\frac{\partial u_i}{\partial x_i}=0,\quad j=1,\ldots,n, $$
with a real function $\Lambda(x)$, $x=(x_1,\ldots,x_n)$. We obtain the conditions, under which the modified Dirichlet problem for this system is solvable up to an arbitrary harmonic function of $n-1$ variables.
Received: 01.05.1996
Bibliographic databases:
Document Type: Article
UDC: 517.956
Language: Russian
Citation: G. A. Isaeva, “About correctness of the Dirichlet problem for a multivariate elliptic system with varying coefficients”, Fundam. Prikl. Mat., 5:3 (1999), 937–941
Citation in format AMSBIB
\Bibitem{Isa99}
\by G.~A.~Isaeva
\paper About correctness of the~Dirichlet problem for a~multivariate elliptic system with varying coefficients
\jour Fundam. Prikl. Mat.
\yr 1999
\vol 5
\issue 3
\pages 937--941
\mathnet{http://mi.mathnet.ru/fpm408}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1806867}
\zmath{https://zbmath.org/?q=an:0958.35036}
Linking options:
  • https://www.mathnet.ru/eng/fpm408
  • https://www.mathnet.ru/eng/fpm/v5/i3/p937
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024