Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1999, Volume 5, Issue 2, Pages 417–435 (Mi fpm398)  

A two-sorted theory of classes and sets, admitting sets of propositional formulas

V. K. Zakharov, A. V. Mikhalev

M. V. Lomonosov Moscow State University
Abstract: The crisis arisen in the naive set theory in the beginning of the 20th century brought to the origin of such strict axiomatic theories as the theory of sets in Zermelo–Fraenkel's axiomatics (ZF) and the theory of classes and sets in Neumann\ddf Bernays–Gödel's axiomatics (NBG). However, in the same time as the naive set theory admitted considering sets of arbitrary objects, such a natural notion as a set of propositional formulas became inadmissible in ZF and NBG. In connection with this circumstance some methods of associated admission were developed, the most known of which is the method of Gödel's enumeration. This paper is devoted to a solution of the full rights admission problem. An axiomatics of the two-sorted theory of classes and sets is exposed in it, which allows to consider sets of propositional formulas equally with sets of object elements.
Received: 01.03.1999
Bibliographic databases:
UDC: 510.2+510.223+512.581
Language: Russian
Citation: V. K. Zakharov, A. V. Mikhalev, “A two-sorted theory of classes and sets, admitting sets of propositional formulas”, Fundam. Prikl. Mat., 5:2 (1999), 417–435
Citation in format AMSBIB
\Bibitem{ZakMik99}
\by V.~K.~Zakharov, A.~V.~Mikhalev
\paper A~two-sorted theory of classes and sets, admitting sets of propositional formulas
\jour Fundam. Prikl. Mat.
\yr 1999
\vol 5
\issue 2
\pages 417--435
\mathnet{http://mi.mathnet.ru/fpm398}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1803592}
\zmath{https://zbmath.org/?q=an:0959.03035}
Linking options:
  • https://www.mathnet.ru/eng/fpm398
  • https://www.mathnet.ru/eng/fpm/v5/i2/p417
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024