Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1999, Volume 5, Issue 2, Pages 627–635 (Mi fpm397)  

This article is cited in 4 scientific papers (total in 4 papers)

On the existence of invariant subspaces of dissipative operators in space with indefinite metric

A. A. Shkalikov

M. V. Lomonosov Moscow State University
Full-text PDF (413 kB) Citations (4)
Abstract: Let $\mathcal H$ be Hilbert space with fundamental symmetry $J=P_+-P_-$, where $P_\pm$ are mutualy orthogonal projectors such that $J^2$ is identity operator. The main result of the paper is the following: if $A$ is a maximal dissipative operator in the Krein space $\mathcal K=\{\mathcal H,J\}$, the domain of $A$ contains $P_+(\mathcal H)$, and the operator $P_+AP_-$ is compact, then there exists an $A$-invariant maximal non-negative subspace $\mathcal L$ such that the spectrum of the restriction $A|_{\mathcal L}$ lies in the closed upper-half complex plain. This theorem is a modification of well-known results of L. S. Pontrjagin, H. Langer, M. G. Krein and T. Ja. Azizov. A new proof is proposed in this paper.
Received: 01.03.1999
Bibliographic databases:
UDC: 517.43
Language: Russian
Citation: A. A. Shkalikov, “On the existence of invariant subspaces of dissipative operators in space with indefinite metric”, Fundam. Prikl. Mat., 5:2 (1999), 627–635
Citation in format AMSBIB
\Bibitem{Shk99}
\by A.~A.~Shkalikov
\paper On the~existence of invariant subspaces of dissipative operators in space with indefinite metric
\jour Fundam. Prikl. Mat.
\yr 1999
\vol 5
\issue 2
\pages 627--635
\mathnet{http://mi.mathnet.ru/fpm397}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1803604}
\zmath{https://zbmath.org/?q=an:0960.47020}
Linking options:
  • https://www.mathnet.ru/eng/fpm397
  • https://www.mathnet.ru/eng/fpm/v5/i2/p627
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025