Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1999, Volume 5, Issue 2, Pages 557–562 (Mi fpm393)  

This article is cited in 2 scientific papers (total in 2 papers)

Multiplicity estimates for theta constants

Yu. V. Nesterenko

M. V. Lomonosov Moscow State University
Full-text PDF (258 kB) Citations (2)
Abstract: An upper bound for multiplicity of zero at the point $q=0$ for polynomials in logarithmic derivatives of theta constants is proved. The upper bound depends on degrees of the polynomials. The proof is based on a description in terms of theta constants of the general solution of a system of algebraic differential equations.
Received: 01.04.1999
Bibliographic databases:
UDC: 517.925
Language: Russian
Citation: Yu. V. Nesterenko, “Multiplicity estimates for theta constants”, Fundam. Prikl. Mat., 5:2 (1999), 557–562
Citation in format AMSBIB
\Bibitem{Nes99}
\by Yu.~V.~Nesterenko
\paper Multiplicity estimates for theta constants
\jour Fundam. Prikl. Mat.
\yr 1999
\vol 5
\issue 2
\pages 557--562
\mathnet{http://mi.mathnet.ru/fpm393}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1803599}
\zmath{https://zbmath.org/?q=an:1030.11034}
Linking options:
  • https://www.mathnet.ru/eng/fpm393
  • https://www.mathnet.ru/eng/fpm/v5/i2/p557
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025