Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 8, Pages 217–222 (Mi fpm38)  

This article is cited in 3 scientific papers (total in 3 papers)

A class of groups in which all unconditionally closed sets are algebraic

O. V. Sipacheva

M. V. Lomonosov Moscow State University
Full-text PDF (111 kB) Citations (3)
References:
Abstract: It is proved that, in any subgroup of a direct product of countable groups, the property of being an unconditionally closed set coincides with that of being an algebraic set.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 152, Issue 2, Pages 288–291
DOI: https://doi.org/10.1007/s10958-008-9055-x
Bibliographic databases:
UDC: 512.546.1+512.546.2+512.543.7
Language: Russian
Citation: O. V. Sipacheva, “A class of groups in which all unconditionally closed sets are algebraic”, Fundam. Prikl. Mat., 12:8 (2006), 217–222; J. Math. Sci., 152:2 (2008), 288–291
Citation in format AMSBIB
\Bibitem{Sip06}
\by O.~V.~Sipacheva
\paper A~class of groups in which all unconditionally closed sets are algebraic
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 8
\pages 217--222
\mathnet{http://mi.mathnet.ru/fpm38}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314033}
\zmath{https://zbmath.org/?q=an:1146.22004}
\elib{https://elibrary.ru/item.asp?id=11143845}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 152
\issue 2
\pages 288--291
\crossref{https://doi.org/10.1007/s10958-008-9055-x}
\elib{https://elibrary.ru/item.asp?id=13575822}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-50249120109}
Linking options:
  • https://www.mathnet.ru/eng/fpm38
  • https://www.mathnet.ru/eng/fpm/v12/i8/p217
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:346
    Full-text PDF :147
    References:37
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024