|
Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 8, Pages 207–215
(Mi fpm37)
|
|
|
|
This article is cited in 6 scientific papers (total in 6 papers)
Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth
S. P. Mishchenkoa, O. I. Cherevatenkob a Ulyanovsk State University
b Ul'yanovsk State Pedagogical University
Abstract:
We study the behaviour of the codimension sequence of polynomial identities of Leibniz algebras over a field of characteristic 0. We prove that a variety $\mathbf V$ has polynomial growth if and only if the condition
$$
\mathbf N_2\mathbf A,\widetilde{\mathbf V_1}\not\subset\mathbf V\subset\widetilde{\mathbf N_c\mathbf A}
$$
holds, where $\mathbf N_2\mathbf A$ is the variety of Lie algebras defined by the identity
$$
(x_1x_2)(x_3x_4)(x_5x_6)\equiv 0,
$$
$\widetilde{\mathbf V_1}$ is the variety of Leibniz algebras defined by the identity
$$
x_1(x_2x_3)(x_4x_5)\equiv 0,
$$
and $\widetilde{\mathbf N_c\mathbf A}$ is the variety of Leibniz algebras defined by the identity
$$
(x_1x_2)\cdots(x_{2c+1}x_{2c+2})\equiv 0.
$$
Citation:
S. P. Mishchenko, O. I. Cherevatenko, “Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth”, Fundam. Prikl. Mat., 12:8 (2006), 207–215; J. Math. Sci., 152:2 (2008), 282–287
Linking options:
https://www.mathnet.ru/eng/fpm37 https://www.mathnet.ru/eng/fpm/v12/i8/p207
|
Statistics & downloads: |
Abstract page: | 345 | Full-text PDF : | 117 | References: | 50 | First page: | 1 |
|