Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 8, Pages 207–215 (Mi fpm37)  

This article is cited in 6 scientific papers (total in 6 papers)

Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth

S. P. Mishchenkoa, O. I. Cherevatenkob

a Ulyanovsk State University
b Ul'yanovsk State Pedagogical University
Full-text PDF (125 kB) Citations (6)
References:
Abstract: We study the behaviour of the codimension sequence of polynomial identities of Leibniz algebras over a field of characteristic 0. We prove that a variety $\mathbf V$ has polynomial growth if and only if the condition
$$ \mathbf N_2\mathbf A,\widetilde{\mathbf V_1}\not\subset\mathbf V\subset\widetilde{\mathbf N_c\mathbf A} $$
holds, where $\mathbf N_2\mathbf A$ is the variety of Lie algebras defined by the identity
$$ (x_1x_2)(x_3x_4)(x_5x_6)\equiv 0, $$
$\widetilde{\mathbf V_1}$ is the variety of Leibniz algebras defined by the identity
$$ x_1(x_2x_3)(x_4x_5)\equiv 0, $$
and $\widetilde{\mathbf N_c\mathbf A}$ is the variety of Leibniz algebras defined by the identity
$$ (x_1x_2)\cdots(x_{2c+1}x_{2c+2})\equiv 0. $$
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 152, Issue 2, Pages 282–287
DOI: https://doi.org/10.1007/s10958-008-9054-y
Bibliographic databases:
UDC: 512.572
Language: Russian
Citation: S. P. Mishchenko, O. I. Cherevatenko, “Necessary and sufficient conditions for a variety of Leibniz algebras to have polynomial growth”, Fundam. Prikl. Mat., 12:8 (2006), 207–215; J. Math. Sci., 152:2 (2008), 282–287
Citation in format AMSBIB
\Bibitem{MisChe06}
\by S.~P.~Mishchenko, O.~I.~Cherevatenko
\paper Necessary and sufficient conditions for a~variety of Leibniz algebras to have polynomial growth
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 8
\pages 207--215
\mathnet{http://mi.mathnet.ru/fpm37}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314032}
\zmath{https://zbmath.org/?q=an:1184.17003}
\elib{https://elibrary.ru/item.asp?id=11143844}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 152
\issue 2
\pages 282--287
\crossref{https://doi.org/10.1007/s10958-008-9054-y}
\elib{https://elibrary.ru/item.asp?id=13574010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-50249113152}
Linking options:
  • https://www.mathnet.ru/eng/fpm37
  • https://www.mathnet.ru/eng/fpm/v12/i8/p207
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:345
    Full-text PDF :117
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024