Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1998, Volume 4, Issue 4, Pages 1423–1426 (Mi fpm362)  

Short communications

On the best local nonglobal rational approximation in the space $H_2$

M. A. Nazarenko

M. V. Lomonosov Moscow State University
Abstract: For any natural number $k$ the function from the Hardy space $H_2$ is found that its rational approximation of $(k,1)$ degree with pole in $1/\sqrt{2}$ gives the best local nonglobal approximation in the set of all rational functions of $(k,1)$ degree.
Received: 01.04.1996
Bibliographic databases:
Document Type: Article
UDC: 517.53
Language: Russian
Citation: M. A. Nazarenko, “On the best local nonglobal rational approximation in the space $H_2$”, Fundam. Prikl. Mat., 4:4 (1998), 1423–1426
Citation in format AMSBIB
\Bibitem{Naz98}
\by M.~A.~Nazarenko
\paper On the~best local nonglobal rational approximation in the~space~$H_2$
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 4
\pages 1423--1426
\mathnet{http://mi.mathnet.ru/fpm362}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1798515}
\zmath{https://zbmath.org/?q=an:0948.41007}
Linking options:
  • https://www.mathnet.ru/eng/fpm362
  • https://www.mathnet.ru/eng/fpm/v4/i4/p1423
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:227
    Full-text PDF :95
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024