|
Fundamentalnaya i Prikladnaya Matematika, 1998, Volume 4, Issue 4, Pages 1423–1426
(Mi fpm362)
|
|
|
|
Short communications
On the best local nonglobal rational approximation in the space $H_2$
M. A. Nazarenko M. V. Lomonosov Moscow State University
Abstract:
For any natural number $k$ the function from the Hardy space $H_2$ is found that its rational approximation of $(k,1)$ degree with pole in $1/\sqrt{2}$ gives the best local nonglobal approximation in the set of all rational functions of $(k,1)$ degree.
Received: 01.04.1996
Citation:
M. A. Nazarenko, “On the best local nonglobal rational approximation in the space $H_2$”, Fundam. Prikl. Mat., 4:4 (1998), 1423–1426
Linking options:
https://www.mathnet.ru/eng/fpm362 https://www.mathnet.ru/eng/fpm/v4/i4/p1423
|
Statistics & downloads: |
Abstract page: | 227 | Full-text PDF : | 95 | First page: | 2 |
|