Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1998, Volume 4, Issue 4, Pages 1419–1422 (Mi fpm359)  

This article is cited in 19 scientific papers (total in 19 papers)

Short communications

Separable torsion free Abelian groups with $UA$-rings of endomorphisms

O. V. Ljubimtsev

Nizhny Novgorod State Pedagogical University
Abstract: A semigroup $(R,\cdot)$ is said to be a unique addition ring ($UA$-ring) if there exists a unique binary operation $+$, making $(R,\cdot,+)$ into a ring. We call an abelian group $\operatorname{End}$-$UA$-group if its endomorphism ring is $UA$-ring. As a result we have obtained a characterization of separable tortion free $\operatorname{End}$-$UA$-groups.
Received: 01.10.1996
Bibliographic databases:
Document Type: Article
UDC: 512.541
Language: Russian
Citation: O. V. Ljubimtsev, “Separable torsion free Abelian groups with $UA$-rings of endomorphisms”, Fundam. Prikl. Mat., 4:4 (1998), 1419–1422
Citation in format AMSBIB
\Bibitem{Lju98}
\by O.~V.~Ljubimtsev
\paper Separable torsion free Abelian groups with $UA$-rings of endomorphisms
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 4
\pages 1419--1422
\mathnet{http://mi.mathnet.ru/fpm359}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1798514}
\zmath{https://zbmath.org/?q=an:0945.20033}
Linking options:
  • https://www.mathnet.ru/eng/fpm359
  • https://www.mathnet.ru/eng/fpm/v4/i4/p1419
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:297
    Full-text PDF :122
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024