Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1998, Volume 4, Issue 4, Pages 1279–1305 (Mi fpm352)  

This article is cited in 5 scientific papers (total in 5 papers)

Fully invariant subgroups of separable Abelian groups

S. Ya. Grinshpon

Tomsk State University
Abstract: The new description of fully invariant subgroups and their lattice for Abelian $p$-groups without elements of infinite height and large subgroups and their lattice for arbitrary Abelian $p$-groups is obtained. Ulm–Kaplansky invariants of these subgroups are calculated. The full description of fully invariant subgroups and their lattice for separable torsion free Abelian groups is obtained.
Received: 01.06.1996
Bibliographic databases:
UDC: 512.541
Language: Russian
Citation: S. Ya. Grinshpon, “Fully invariant subgroups of separable Abelian groups”, Fundam. Prikl. Mat., 4:4 (1998), 1279–1305
Citation in format AMSBIB
\Bibitem{Gri98}
\by S.~Ya.~Grinshpon
\paper Fully invariant subgroups of separable Abelian groups
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 4
\pages 1279--1305
\mathnet{http://mi.mathnet.ru/fpm352}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1798505}
\zmath{https://zbmath.org/?q=an:0951.20041}
Linking options:
  • https://www.mathnet.ru/eng/fpm352
  • https://www.mathnet.ru/eng/fpm/v4/i4/p1279
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:269
    Full-text PDF :144
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024