Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1998, Volume 4, Issue 4, Pages 1225–1249 (Mi fpm346)  

This article is cited in 1 scientific paper (total in 1 paper)

On necessary and sufficient conditions of embedding of Nikol'skii classes from Lorentz spaces

A. I. Aganin

M. V. Lomonosov Moscow State University
Full-text PDF (786 kB) Citations (1)
Abstract: This article deals with embedding Nikol'skii classes from Lorentz spaces into Lorentz spaces and each in other. Author has obtained necessary and sufficient conditions for these embeddings with certain restrictions on fundamental functions of Lorentz spaces.
Received: 01.05.1996
Bibliographic databases:
UDC: 517.5
Language: Russian
Citation: A. I. Aganin, “On necessary and sufficient conditions of embedding of Nikol'skii classes from Lorentz spaces”, Fundam. Prikl. Mat., 4:4 (1998), 1225–1249
Citation in format AMSBIB
\Bibitem{Aga98}
\by A.~I.~Aganin
\paper On necessary and sufficient conditions of embedding of Nikol'skii classes from Lorentz spaces
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 4
\pages 1225--1249
\mathnet{http://mi.mathnet.ru/fpm346}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1798502}
\zmath{https://zbmath.org/?q=an:0943.46018}
Linking options:
  • https://www.mathnet.ru/eng/fpm346
  • https://www.mathnet.ru/eng/fpm/v4/i4/p1225
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:228
    Full-text PDF :115
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024