Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1998, Volume 4, Issue 2, Pages 691–708 (Mi fpm327)  

On the solvability of linear inverse problem with final overdetermination in a Banach space of $L^1$-type

I. V. Tikhonov

Moscow Engineering Physics Institute (State University)
Abstract: Given $T>0$ we consider the inverse problem in a Banach space $E$
\begin{gather*} du(t)/dt=Au(t)+\Phi(t)f,\quad 0\le t\le T, \\ u(0)=u_0,\ \ u(T)=u_1,\quad u_0,u_1 \in D(A) \end{gather*}
where the element $f\in E$ is unknown. Our main result may be written as follows (cf. theorem 2): Let $E=L^1(X,\mu)$ and let $A$ be the infinitesimal generator of a $C_0$ semigroup $U(t)$ on $L^1(X,\mu)$ satisfying $\|U(t)\|<1$ for $t>0$. Let $\Phi(t)$ be defined by
$$ \big(\Phi(t)f\big)(x)=\varphi(x,t)\cdot f(x) $$
where $\varphi\in C^1([0,T];L^\infty(X,\mu))$. Suppose that $\varphi(x,t)\ge0$, $\partial\varphi(x,t)/\partial t\ge0$ and $\mu$-$\inf\varphi(x,T)>0$. Then for each pair $u_0,u_1\in D(A)$ the inverse problem has a unique solution $f\in L^1(X,\mu)$, i. e., there exists a unique $f\in L^1(X,\mu)$ such that the corresponding function
$$ u(t)=U(t)u_0+\int\limits_0^t U(t-s)\Phi(s)f\,ds, \quad 0\le t\le T, $$
satisfies the final condition $u(T)=u_1$. Moreover, $\|f\|\le C(\|Au_0\|+\|Au_1\|)$ with the constant $C>0$ computing in the explicit form (see formulas (9), (11)). An abstract version of this assertion is given in theorem 1. To illustrate the results we present three examples: the linear inhomogeneous system of ODE, the heat equation in $\mathbb R^n$, and the one-dimensional “transport equation”.
Received: 01.03.1996
Bibliographic databases:
UDC: 517.9
Language: Russian
Citation: I. V. Tikhonov, “On the solvability of linear inverse problem with final overdetermination in a Banach space of $L^1$-type”, Fundam. Prikl. Mat., 4:2 (1998), 691–708
Citation in format AMSBIB
\Bibitem{Tik98}
\by I.~V.~Tikhonov
\paper On the solvability of linear inverse problem with final overdetermination in a Banach space of~$L^1$-type
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 2
\pages 691--708
\mathnet{http://mi.mathnet.ru/fpm327}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1801182}
\zmath{https://zbmath.org/?q=an:0963.34008}
Linking options:
  • https://www.mathnet.ru/eng/fpm327
  • https://www.mathnet.ru/eng/fpm/v4/i2/p691
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024