Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1998, Volume 4, Issue 2, Pages 757–761 (Mi fpm310)  

This article is cited in 1 scientific paper (total in 1 paper)

Short communications

Normal surfaces whose anticanonical divisor is numerically positive

M. M. Grinenko

Steklov Mathematical Institute, Russian Academy of Sciences
Full-text PDF (246 kB) Citations (1)
Abstract: Let $X$ be a normal projective surface and anticanonical divisor $-K_{X}$ is numerically positive. Then $-K_{X}$ is numerically ample and rationality of $X$ is equivalent to its $\mathbb Q$-factoriality.
Received: 01.04.1996
Bibliographic databases:
Document Type: Article
UDC: 512.774.4
Language: Russian
Citation: M. M. Grinenko, “Normal surfaces whose anticanonical divisor is numerically positive”, Fundam. Prikl. Mat., 4:2 (1998), 757–761
Citation in format AMSBIB
\Bibitem{Gri98}
\by M.~M.~Grinenko
\paper Normal surfaces whose anticanonical divisor is numerically positive
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 2
\pages 757--761
\mathnet{http://mi.mathnet.ru/fpm310}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1801188}
\zmath{https://zbmath.org/?q=an:0957.14024}
Linking options:
  • https://www.mathnet.ru/eng/fpm310
  • https://www.mathnet.ru/eng/fpm/v4/i2/p757
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025