Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1998, Volume 4, Issue 1, Pages 101–108 (Mi fpm303)  

This article is cited in 2 scientific papers (total in 2 papers)

Research Papers Dedicated to the 100th Anniversary of P. S. Alexandroff's Birth

Strongly countable-dimensional resolvents of sigma-compact groups

M. M. Zarichnyi

Ivan Franko National University of L'viv
Full-text PDF (355 kB) Citations (2)
Abstract: For every topological group $H$ which is a $Q^\infty$-manifold there exists a topological group which is an $\mathbb R^\infty$-manifold and can be mapped onto $H$ by a homomorphism satisfying some sufficiently strong softness conditions.
Received: 01.02.1997
Bibliographic databases:
Document Type: Article
UDC: 515.12
Language: Russian
Citation: M. M. Zarichnyi, “Strongly countable-dimensional resolvents of sigma-compact groups”, Fundam. Prikl. Mat., 4:1 (1998), 101–108
Citation in format AMSBIB
\Bibitem{Zar98}
\by M.~M.~Zarichnyi
\paper Strongly countable-dimensional resolvents of sigma-compact groups
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 1
\pages 101--108
\mathnet{http://mi.mathnet.ru/fpm303}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1786435}
\zmath{https://zbmath.org/?q=an:0960.22001}
Linking options:
  • https://www.mathnet.ru/eng/fpm303
  • https://www.mathnet.ru/eng/fpm/v4/i1/p101
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:205
    Full-text PDF :91
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024