Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1998, Volume 4, Issue 1, Pages 81–100 (Mi fpm302)  

This article is cited in 1 scientific paper (total in 1 paper)

Research Papers Dedicated to the 100th Anniversary of P. S. Alexandroff's Birth

Algebraic structure of function rings of some universal spaces

A. V. Zarelua

M. V. Lomonosov Moscow State University
Abstract: Using an algebraic characterisation of zero-dimensional mappings the author constructed universal compacts $Z(B,H)$ for the spaces possessing zero-dimensional mappings into the given compact $B$, where $H$ is a collection of functions on $B$ which separates points and closed subsets. By the characterisation theorem due to M. Bestvina for $B=S^n$ and an appropriate $H$ it is proved that the compact $Z(B,H)$ coincides with the Menger's universal compact $\mu^n$. As an application one gets a description of the ring $C_{\mathbb R}(\mu^n)$ as the closure of the polynomial ring $C_{\mathbb R}(S^n)[u_1,u_2,\dots,u_k,\dots]$ on elements $u_k$ such that $u_k^2=h_k^+$ for some $h_k^+\in C_{\mathbb R}(S^n)$. Another application is an representation of $\mu^n$ as the inverse limit of real algebraic manifolds. The complexification of this construction leads to some compact $E^{2n}$ which is the inverse limit of compactifications of complex algebraic manifolds without singularities and contains $\mu^n$ as the fixed set of the involution generated by the complex conjugation. On $E^{2n}$ an action of the countable product of order 2 cyclic groups is defined; the orbit-space of this action is a compactification of the tangent bundle $T(S^n)$.
Received: 01.10.1997
Bibliographic databases:
Document Type: Article
UDC: 515.5
Language: Russian
Citation: A. V. Zarelua, “Algebraic structure of function rings of some universal spaces”, Fundam. Prikl. Mat., 4:1 (1998), 81–100
Citation in format AMSBIB
\Bibitem{Zar98}
\by A.~V.~Zarelua
\paper Algebraic structure of function rings of some universal spaces
\jour Fundam. Prikl. Mat.
\yr 1998
\vol 4
\issue 1
\pages 81--100
\mathnet{http://mi.mathnet.ru/fpm302}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1786434}
\zmath{https://zbmath.org/?q=an:0968.54012}
Linking options:
  • https://www.mathnet.ru/eng/fpm302
  • https://www.mathnet.ru/eng/fpm/v4/i1/p81
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024