Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2006, Volume 12, Issue 8, Pages 29–77 (Mi fpm28)  

This article is cited in 10 scientific papers (total in 10 papers)

Elementary equivalence of Chevalley groups over fields

E. I. Bunina

M. V. Lomonosov Moscow State University
References:
Abstract: It is proved that (elementary) Chevalley groups $G_\pi(\Phi,K)$ and $G_{\pi'}(\Phi',K')$ (or $E_\pi (\Phi,K)$ and $E_{\pi'}(\Phi',K')$) over infinite fields $K$ and $K'$ of characteristic different from 2, with weight lattices $\Lambda$ and $\Lambda'$, respectively, are elementarily equivalent if and only if the root systems $\Phi$ and $\Phi'$ are isomorphic, the fields $K$ and $K'$ are elementarily equivalent, and the lattices $\Lambda$ and $\Lambda'$ coincide.
English version:
Journal of Mathematical Sciences (New York), 2008, Volume 152, Issue 2, Pages 155–190
DOI: https://doi.org/10.1007/s10958-008-9064-9
Bibliographic databases:
UDC: 512.54+510.67
Language: Russian
Citation: E. I. Bunina, “Elementary equivalence of Chevalley groups over fields”, Fundam. Prikl. Mat., 12:8 (2006), 29–77; J. Math. Sci., 152:2 (2008), 155–190
Citation in format AMSBIB
\Bibitem{Bun06}
\by E.~I.~Bunina
\paper Elementary equivalence of Chevalley groups over fields
\jour Fundam. Prikl. Mat.
\yr 2006
\vol 12
\issue 8
\pages 29--77
\mathnet{http://mi.mathnet.ru/fpm28}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2314023}
\zmath{https://zbmath.org/?q=an:1161.20040}
\elib{https://elibrary.ru/item.asp?id=11143835}
\transl
\jour J. Math. Sci.
\yr 2008
\vol 152
\issue 2
\pages 155--190
\crossref{https://doi.org/10.1007/s10958-008-9064-9}
\elib{https://elibrary.ru/item.asp?id=13572067}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-50249110582}
Linking options:
  • https://www.mathnet.ru/eng/fpm28
  • https://www.mathnet.ru/eng/fpm/v12/i8/p29
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024