|
Fundamentalnaya i Prikladnaya Matematika, 1997, Volume 3, Issue 4, Pages 1199–1227
(Mi fpm271)
|
|
|
|
This article is cited in 5 scientific papers (total in 5 papers)
A model of transition from discrete spectrum to continuous one in the singular perturbation theory
S. A. Stepin M. V. Lomonosov Moscow State University
Abstract:
The spectral problem
\begin{gather*}
i\varepsilon y''(x)+(x-\lambda)y(x)=0,
\\
y(-1)=y(1)=0
\end{gather*}
is considered where $\lambda$ is a spectral parameter and $\varepsilon>0$ is a small parameter. Spectrum localization, behavior of eigenfunctions and Green function of this problem are studied by analytical means.
Received: 01.09.1996
Citation:
S. A. Stepin, “A model of transition from discrete spectrum to continuous one in the singular perturbation theory”, Fundam. Prikl. Mat., 3:4 (1997), 1199–1227
Linking options:
https://www.mathnet.ru/eng/fpm271 https://www.mathnet.ru/eng/fpm/v3/i4/p1199
|
|