|
Fundamentalnaya i Prikladnaya Matematika, 1997, Volume 3, Issue 4, Pages 1253–1260
(Mi fpm262)
|
|
|
|
Mathematical Enlightenment
On the prooves of Lindemann's theorem and Gelfond–Schneider's theorem
A. I. Galochkin M. V. Lomonosov Moscow State University
Abstract:
The paper presents the new prooves of the Lindemann's theorem on the transcedence of the number $e^{\alpha}$ for non-zero algebraic $\alpha$ and the Gelfond–Schneider's theorem on the transcendence of the number $a^{\beta}$ for algebraic $a\ne0;1$ and algebraic irrational $\beta$. There is a difference from other prooves of Gelfond–Schneider's theorem. On the first step we construct the auxilary function with great order of zeroes at only the point $z=0$.
Received: 01.01.1997
Citation:
A. I. Galochkin, “On the prooves of Lindemann's theorem and Gelfond–Schneider's theorem”, Fundam. Prikl. Mat., 3:4 (1997), 1253–1260
Linking options:
https://www.mathnet.ru/eng/fpm262 https://www.mathnet.ru/eng/fpm/v3/i4/p1253
|
|