Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1997, Volume 3, Issue 4, Pages 1229–1237 (Mi fpm261)  

This article is cited in 2 scientific papers (total in 2 papers)

Nilpotency of prime radical in PI-rings having faithful module with relative Krull dimension

A. M. Chernev

M. V. Lomonosov Moscow State University
Full-text PDF (435 kB) Citations (2)
Abstract: In this paper author investigates the properties of PI-rings having faithful module with Krull dimension relative to a noetherian torsion theory. The main results of this paper: Let $R$ be an associative PI-ring with identity, M be a left faithful $R$-module, $\tau$ — noetherian torsion theory. Let $\tau M=0$ and module $M$ have $\tau$-Krull dimension. If $N$ is a nil ideal then there exists a natural $n$ such that ${N}^{n}M=0$. Let $R$ be an associative PI-ring with identity, $M$ be a left faithful $R$-module, $\tau$ — noetherian torsion theory. Let module $M$ have $\tau$-Krull dimension. If $R$ is $\tau$-torsionfree as left $R$-module, module $M$ and prime radical of $R$ are finitely generated, then $R$ has left $\tau$-Krull dimension and left $\tau$-Krull dimension of $R$ is equal to left $\tau$-Krull dimension of module $M$.
Received: 01.11.1997
Bibliographic databases:
UDC: 512.4+553.1
Language: Russian
Citation: A. M. Chernev, “Nilpotency of prime radical in PI-rings having faithful module with relative Krull dimension”, Fundam. Prikl. Mat., 3:4 (1997), 1229–1237
Citation in format AMSBIB
\Bibitem{Che97}
\by A.~M.~Chernev
\paper Nilpotency of prime radical in PI-rings having faithful module with relative Krull dimension
\jour Fundam. Prikl. Mat.
\yr 1997
\vol 3
\issue 4
\pages 1229--1237
\mathnet{http://mi.mathnet.ru/fpm261}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1794511}
\zmath{https://zbmath.org/?q=an:0932.16020}
Linking options:
  • https://www.mathnet.ru/eng/fpm261
  • https://www.mathnet.ru/eng/fpm/v3/i4/p1229
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :93
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024