Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1997, Volume 3, Issue 3, Pages 809–819 (Mi fpm244)  

This article is cited in 9 scientific papers (total in 9 papers)

On a description of normal Hankel matrices

Kh. D. Ikramov

M. V. Lomonosov Moscow State University
Full-text PDF (427 kB) Citations (9)
Abstract: Characterizing complex matrices normal and Hankel at the same time is shown to be equivalent to characterizing commuting pairs of real Hankel matrices. This last problem is probably not very easy. We give some results that can be considered as a partial progress on the way to solving the problem.
Received: 01.10.1995
Bibliographic databases:
UDC: 519.612
Language: Russian
Citation: Kh. D. Ikramov, “On a description of normal Hankel matrices”, Fundam. Prikl. Mat., 3:3 (1997), 809–819
Citation in format AMSBIB
\Bibitem{Ikr97}
\by Kh.~D.~Ikramov
\paper On a description of normal Hankel matrices
\jour Fundam. Prikl. Mat.
\yr 1997
\vol 3
\issue 3
\pages 809--819
\mathnet{http://mi.mathnet.ru/fpm244}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1794143}
\zmath{https://zbmath.org/?q=an:0940.47025}
Linking options:
  • https://www.mathnet.ru/eng/fpm244
  • https://www.mathnet.ru/eng/fpm/v3/i3/p809
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025