Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1997, Volume 3, Issue 3, Pages 653–674 (Mi fpm236)  

This article is cited in 5 scientific papers (total in 5 papers)

Approximation of $k$-ary functions by functions from the given system

A. S. Ambrosimov
Full-text PDF (738 kB) Citations (5)
Abstract: Problems of $k$-ary functions approximation by functions from the given system are investigated in this paper. In particular, generalization of Golomb theorem [1] is obtained in the case of ring $\mathbb{Z}/k$ or finite field $GF(q)$. The definition of $k$-ary functions equivalency with respect to the given functions system is introduced. Classes of equivalency with respect to the linear functions system over finite field or ring $\mathbb{Z}/4$ are described. Limit theorems on cardinality of random $k$-ary functions equivalency class are proved. Also in this paper we found functions which minimize maximum probability of coincidence with linear functions in one variable over finite ring with identity.
Received: 01.01.1996
Bibliographic databases:
UDC: 519.716
Language: Russian
Citation: A. S. Ambrosimov, “Approximation of $k$-ary functions by functions from the given system”, Fundam. Prikl. Mat., 3:3 (1997), 653–674
Citation in format AMSBIB
\Bibitem{Amb97}
\by A.~S.~Ambrosimov
\paper Approximation of $k$-ary functions by functions from the given system
\jour Fundam. Prikl. Mat.
\yr 1997
\vol 3
\issue 3
\pages 653--674
\mathnet{http://mi.mathnet.ru/fpm236}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1794134}
\zmath{https://zbmath.org/?q=an:0928.94013}
Linking options:
  • https://www.mathnet.ru/eng/fpm236
  • https://www.mathnet.ru/eng/fpm/v3/i3/p653
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024