Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1997, Volume 3, Issue 1, Pages 163–170 (Mi fpm218)  

Additive problems with numbers having a given number of prime dividers from progressions

A. A. Zhukova

Vladimir State Pedagogical University
Abstract: We have found the number of the representations of a number $N$ as
$$ n=mr\quadand\quad n+m^2+r^2, $$
where $m,r$ — natural numbers and $n$ are the numbers having $k$ prime dividers such that $p_i\equiv l_i\, (\bmod\ d_0)$, $p_i\geq t> \ln^{B+1}N$, $(l_i,d_0)=1$, $i=1,2,\ldots,k$, $(N-l_1\ldots l_k,d_0)=1$. The paper also contains the results about distribution of such numbers $n$ in arithmetic progressions with large modulus.
Received: 01.09.1996
Bibliographic databases:
UDC: 511.335
Language: Russian
Citation: A. A. Zhukova, “Additive problems with numbers having a given number of prime dividers from progressions”, Fundam. Prikl. Mat., 3:1 (1997), 163–170
Citation in format AMSBIB
\Bibitem{Zhu97}
\by A.~A.~Zhukova
\paper Additive problems with numbers having a given number of prime dividers from progressions
\jour Fundam. Prikl. Mat.
\yr 1997
\vol 3
\issue 1
\pages 163--170
\mathnet{http://mi.mathnet.ru/fpm218}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1803612}
\zmath{https://zbmath.org/?q=an:0911.11046}
Linking options:
  • https://www.mathnet.ru/eng/fpm218
  • https://www.mathnet.ru/eng/fpm/v3/i1/p163
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:268
    Full-text PDF :117
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024