Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1997, Volume 3, Issue 1, Pages 195–254 (Mi fpm211)  

This article is cited in 6 scientific papers (total in 6 papers)

Linear codes over finite rings and modules

A. A. Nechaev, A. S. Kuz'min, V. T. Markov

Centre for New Information Technologies, Moscow State University
Abstract: The foundations of linear code theory over finite rings and modules are developed. The main objects of investigation are: systematic code, dual code, McWilliams identity, parity-check matrix an the Hamming distance of a code. The properties of codes over modules and linear spaces are compared, and the representations of linear codes by polylinear recurrences are described, the latter being the most efficient for systematic and Abelian group codes. The special role of quasi-Frobenius modules in code theory is revealed. As corollaries we obtain and generalize some known results. In particular, we build cyclic Hamming and BCH codes over an arbitrary primary module.
Received: 01.06.1995
Bibliographic databases:
UDC: 519.725
Language: Russian
Citation: A. A. Nechaev, A. S. Kuz'min, V. T. Markov, “Linear codes over finite rings and modules”, Fundam. Prikl. Mat., 3:1 (1997), 195–254
Citation in format AMSBIB
\Bibitem{NecKuzMar97}
\by A.~A.~Nechaev, A.~S.~Kuz'min, V.~T.~Markov
\paper Linear codes over finite rings and modules
\jour Fundam. Prikl. Mat.
\yr 1997
\vol 3
\issue 1
\pages 195--254
\mathnet{http://mi.mathnet.ru/fpm211}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1803615}
\zmath{https://zbmath.org/?q=an:1053.94566}
Linking options:
  • https://www.mathnet.ru/eng/fpm211
  • https://www.mathnet.ru/eng/fpm/v3/i1/p195
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:808
    Full-text PDF :596
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024