Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 1997, Volume 3, Issue 1, Pages 37–45 (Mi fpm204)  

The First International School "Functional Analysis, Differential Equations and Their Application" Puebla (Mexico), May 18--23, 1995

Polynomial continuity

J. Llavona

Carlos III University of Madrid
Abstract: A mapping $f\colon\,X\to Y$ between Banach spaces $X$ and $Y$ is said to be polynomially continuous ($P$-continuous, for short) if its restriction to any bounded set is uniformly continuous for the weak polynomial topology, i.e., for every $\varepsilon>0$ and bounded $B\subset X$, there are a finite set $\{p_1,\ldots,p_n\}$ of polynomials on $X$ and $\delta>0$ so that $\|f(x)-f(y)\|<\varepsilon$ whenever $x,y\in B$ satisfy $|p_j(x-y)|<\delta$ $(1\leq j\leq n)$. Every compact (linear) operator is $P$-continuous. The spaces $L^\infty [0,1]$, $L^1[0,1]$ and $C[0,1]$, for example, admit polynomials which are not $P$-continuous. We prove that every $P$-continuous operator is weakly compact and that for every $k\in\mathbb N$ $(k\geq2)$ there is a $k$-homogeneous scalar valued polynomial on $\ell_1$ which is not $P$-continuous. We also characterize the spaces for which uniform continuity and $P$-continuity coincide, as those spaces admitting a separating polynomial. Other properties of $P$-continuous polynomials are investigated.
Received: 01.04.1996
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: Russian
Citation: J. Llavona, “Polynomial continuity”, Fundam. Prikl. Mat., 3:1 (1997), 37–45
Citation in format AMSBIB
\Bibitem{Lla97}
\by J.~Llavona
\paper Polynomial continuity
\jour Fundam. Prikl. Mat.
\yr 1997
\vol 3
\issue 1
\pages 37--45
\mathnet{http://mi.mathnet.ru/fpm204}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1803608}
\zmath{https://zbmath.org/?q=an:0899.46018}
Linking options:
  • https://www.mathnet.ru/eng/fpm204
  • https://www.mathnet.ru/eng/fpm/v3/i1/p37
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:234
    Full-text PDF :147
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024