Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2020, Volume 23, Issue 3, Pages 83–94 (Mi fpm1919)  

The asymptotic approach to the description of the center of a relatively free Lie-nilpotent algebra

A. V. Grishin

Moscow Pedagogical State University, 1/1 Malaya Pirogovskaya Str., Moscow, 119991, Russia
References:
Abstract: In this work, we consider asymptotic properties of dimensional functions related to relatively free algebras. A notion of the $\mathrm{T}$-space inclusion measure into a relatively free algebra is introduced. We calculate this measure for the center of the relatively free Lie-nilpotent algebra of index $5$ and for the $\mathrm{T}$-space of this algebra generated by the long commutator $[x_1, x_2, x_3, x_4]$. Both of these measures coincide being equal to $1/2$. This fact allows us to obtain an asymptotic description of the center. Also, a probability-theoretical view of the inclusion measure is proposed.
English version:
Journal of Mathematical Sciences (New York), 2023, Volume 269, Issue 3, Pages 322–330
DOI: https://doi.org/10.1007/s10958-023-06284-6
Document Type: Article
UDC: 512.552.4
Language: Russian
Citation: A. V. Grishin, “The asymptotic approach to the description of the center of a relatively free Lie-nilpotent algebra”, Fundam. Prikl. Mat., 23:3 (2020), 83–94; J. Math. Sci., 269:3 (2023), 322–330
Citation in format AMSBIB
\Bibitem{Gri20}
\by A.~V.~Grishin
\paper The asymptotic approach to the description of the center of a relatively free Lie-nilpotent algebra
\jour Fundam. Prikl. Mat.
\yr 2020
\vol 23
\issue 3
\pages 83--94
\mathnet{http://mi.mathnet.ru/fpm1919}
\transl
\jour J. Math. Sci.
\yr 2023
\vol 269
\issue 3
\pages 322--330
\crossref{https://doi.org/10.1007/s10958-023-06284-6}
Linking options:
  • https://www.mathnet.ru/eng/fpm1919
  • https://www.mathnet.ru/eng/fpm/v23/i3/p83
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024