|
Fundamentalnaya i Prikladnaya Matematika, 2020, Volume 23, Issue 3, Pages 3–11
(Mi fpm1894)
|
|
|
|
Properties of generalized nilpotent elements of pseudo-normed commutative rings
S. A. Aleschenkoa, V. I. Arnautovb, S. T. Glavatskyc a Taras Shevchenko Transnistria State University, Tiraspol, Transnistria / Moldova
b Institute of Mathematics and Computer Science, Academy of Sciences of Moldova, Chisinau, Moldova
c Moscow Lomonosov State University, Moscow, Russia
Abstract:
The set $I$ of all generalized nilpotent elements of a pseudo-normed commutative ring $(R,\xi )$ is a closed ideal, and the factor ring $(R,\xi )/I$ does not contain nonzero generalized nilpotent elements.
Citation:
S. A. Aleschenko, V. I. Arnautov, S. T. Glavatsky, “Properties of generalized nilpotent elements of pseudo-normed commutative rings”, Fundam. Prikl. Mat., 23:3 (2020), 3–11; J. Math. Sci., 269:3 (2023), 269–275
Linking options:
https://www.mathnet.ru/eng/fpm1894 https://www.mathnet.ru/eng/fpm/v23/i3/p3
|
|