Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2020, Volume 23, Issue 2, Pages 217–229 (Mi fpm1891)  

This article is cited in 1 scientific paper (total in 1 paper)

An example of length computation for a group algebra of a noncyclic Abelian group in the modular case

O. V. Markovaabc

a Lomonosov Moscow State University, Moscow, 119991, Russia
b Moscow Center for Fundamental and Applied Mathematics, Moscow, 119991, Russia
c Moscow Institute of Physics and Technology (State University), Moscow Region, Dolgoprudny, 141701, Russia
Full-text PDF (180 kB) Citations (1)
References:
Abstract: We demonstrate that the technique for calculating the length of two-block matrix algebras, developed by the author earlier, can be used to calculate the lengths of group algebras of Abelian groups. We find the length of the group algebra of a noncyclic Abelian group of order $2p^2 $, where $p> 2$ is a prime number, over a field of characteristic $p$, namely, we prove that the length of this algebra is equal to $3p-2$.
Funding agency Grant number
Russian Science Foundation 17-11-01124
The investigation is supported by Russian Science Foundation grant 17-11-01124.
English version:
Journal of Mathematical Sciences (New York), 2022, Volume 262, Issue 5, Pages 740–748
DOI: https://doi.org/10.1007/s10958-022-05851-7
Document Type: Article
UDC: 512.552
Language: Russian
Citation: O. V. Markova, “An example of length computation for a group algebra of a noncyclic Abelian group in the modular case”, Fundam. Prikl. Mat., 23:2 (2020), 217–229; J. Math. Sci., 262:5 (2022), 740–748
Citation in format AMSBIB
\Bibitem{Mar20}
\by O.~V.~Markova
\paper An example of length computation for a~group algebra of a~noncyclic Abelian group in the modular case
\jour Fundam. Prikl. Mat.
\yr 2020
\vol 23
\issue 2
\pages 217--229
\mathnet{http://mi.mathnet.ru/fpm1891}
\transl
\jour J. Math. Sci.
\yr 2022
\vol 262
\issue 5
\pages 740--748
\crossref{https://doi.org/10.1007/s10958-022-05851-7}
Linking options:
  • https://www.mathnet.ru/eng/fpm1891
  • https://www.mathnet.ru/eng/fpm/v23/i2/p217
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:144
    Full-text PDF :61
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024