Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2020, Volume 23, Issue 1, Pages 219–257 (Mi fpm1877)  

Supremum of the Euclidean norms of the multidimensional Wiener process and Brownian bridge: Sharp asymptotics of probabilities of large deviations

V. R. Fatalov
References:
Abstract: For $ T > 0 $, we prove theorems concerning sharp asymptotics of the probabilities
$$ \mathbf P \biggl\{ \sup\limits_{t \in [0, T]} \sum\limits_{j=1}^n w_j^2(t) > u^2 \biggr \}, \mathbf P \biggl \{ \sup\limits_{t \in [0, T]} \sum\limits_{j=1}^n w_{j0,T}^2(t) > u^2 \biggr \}, $$
as $u \to \infty$, where $ w_j(t) $, $ j = 1, \dots, n$, are independent Wiener processes and $ w_{j0,T}(t) $, $ j = 1, \dots, n $, are independent Brownian bridges on the segment $ [0, T] $. Our research method is the double sum method for the Gaussian processes and fields. We also give an application of the obtained results to the statistical tests for the homogeneity hypothesis of $k$ one-dimensional samples.
English version:
Journal of Mathematical Sciences (New York), 2022, Volume 262, Issue 4, Pages 546–573
DOI: https://doi.org/10.1007/s10958-022-05836-6
Document Type: Article
UDC: 519.2
Language: Russian
Citation: V. R. Fatalov, “Supremum of the Euclidean norms of the multidimensional Wiener process and Brownian bridge: Sharp asymptotics of probabilities of large deviations”, Fundam. Prikl. Mat., 23:1 (2020), 219–257; J. Math. Sci., 262:4 (2022), 546–573
Citation in format AMSBIB
\Bibitem{Fat20}
\by V.~R.~Fatalov
\paper Supremum of the Euclidean norms of the multidimensional Wiener process and Brownian bridge: Sharp asymptotics of probabilities of large deviations
\jour Fundam. Prikl. Mat.
\yr 2020
\vol 23
\issue 1
\pages 219--257
\mathnet{http://mi.mathnet.ru/fpm1877}
\transl
\jour J. Math. Sci.
\yr 2022
\vol 262
\issue 4
\pages 546--573
\crossref{https://doi.org/10.1007/s10958-022-05836-6}
Linking options:
  • https://www.mathnet.ru/eng/fpm1877
  • https://www.mathnet.ru/eng/fpm/v23/i1/p219
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:132
    Full-text PDF :102
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024