Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2020, Volume 23, Issue 1, Pages 191–206 (Mi fpm1874)  

This article is cited in 1 scientific paper (total in 1 paper)

Large deviations of weighted sums of independent identically distributed random variables with functionally-defined weights

I. V. Sobolev, A. V. Shklyaev

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (203 kB) Citations (1)
References:
Abstract: Let $S_n=\sum\limits_{j=1}^n a_{j,n} X_{j,n}$ be a weighted sum with independent, identically distributed steps $X_{j,n}$, $j\le n$, where $a_{j,n} = f(j/n)$ for some $f\in C^2[0,1]$. Under Cramer's condition, we prove an integro-local limit theorem for $\mathbf P\bigl(S_n\in [x,x+\Delta_n)\bigr)$ as $x/n\in [m^-,m^+]$ for some $m^-$$m^+$ and any sequence $\Delta_n$ tending to zero slowly enough. This result covers the whole scope of normal, moderate, and large deviations. For the stochastic process $Y_n(t)$, corresponding to $S_0,\ldots,S_n$, we obtain a conditional functional limit theorem concerning convergence $Y_n(t)$ to the Brownian bridge given the condition $S_n\in [x,x+\Delta_n)$.
English version:
Journal of Mathematical Sciences (New York), 2022, Volume 262, Issue 4, Pages 525–536
DOI: https://doi.org/10.1007/s10958-022-05833-9
Document Type: Article
UDC: 519.214.8
Language: Russian
Citation: I. V. Sobolev, A. V. Shklyaev, “Large deviations of weighted sums of independent identically distributed random variables with functionally-defined weights”, Fundam. Prikl. Mat., 23:1 (2020), 191–206; J. Math. Sci., 262:4 (2022), 525–536
Citation in format AMSBIB
\Bibitem{SobShk20}
\by I.~V.~Sobolev, A.~V.~Shklyaev
\paper Large deviations of weighted sums of independent identically distributed random variables with functionally-defined weights
\jour Fundam. Prikl. Mat.
\yr 2020
\vol 23
\issue 1
\pages 191--206
\mathnet{http://mi.mathnet.ru/fpm1874}
\transl
\jour J. Math. Sci.
\yr 2022
\vol 262
\issue 4
\pages 525--536
\crossref{https://doi.org/10.1007/s10958-022-05833-9}
Linking options:
  • https://www.mathnet.ru/eng/fpm1874
  • https://www.mathnet.ru/eng/fpm/v23/i1/p191
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:189
    Full-text PDF :74
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024