Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2020, Volume 23, Issue 1, Pages 75–88 (Mi fpm1867)  

This article is cited in 1 scientific paper (total in 1 paper)

Branching random walks with alternating sign intensities of branching sources

D. M. Balashova

Lomonosov Moscow State University, Moscow, Russia
Full-text PDF (558 kB) Citations (1)
References:
Abstract: We consider a continuous-time symmetric branching random walk on a multidimensional lattice with a finite set of particle generation centers, i.e., branching sources. The existence of a positive eigenvalue of the evolutionary operator means the exponential growth of the first moment of the total number of particles both at an arbitrary point and on the entire lattice. Branching random walks with positive or negative intensities of sources that have a simplex configuration are presented in the paper. It is established that the amount of positive eigenvalues of the evolutionary operator, counting their multiplicity, does not exceed the amount of the branching sources with positive intensity, while the maximal eigenvalue is simple. For branching random walk with different positive intensities of sources and arbitrary configuration for both finite and infinite variance of jumps, the critical values of sources' intensities are found, which allows us to prove the existence of positive eigenvalues of the evolutionary operator.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00468_а
This research was financially supported by the Russian Foundation for Basic Research (project No. 17-01-00468).
English version:
Journal of Mathematical Sciences (New York), 2022, Volume 262, Issue 4, Pages 442–451
DOI: https://doi.org/10.1007/s10958-022-05826-8
Document Type: Article
UDC: 519.21
Language: Russian
Citation: D. M. Balashova, “Branching random walks with alternating sign intensities of branching sources”, Fundam. Prikl. Mat., 23:1 (2020), 75–88; J. Math. Sci., 262:4 (2022), 442–451
Citation in format AMSBIB
\Bibitem{Bal20}
\by D.~M.~Balashova
\paper Branching random walks with alternating sign intensities of branching sources
\jour Fundam. Prikl. Mat.
\yr 2020
\vol 23
\issue 1
\pages 75--88
\mathnet{http://mi.mathnet.ru/fpm1867}
\transl
\jour J. Math. Sci.
\yr 2022
\vol 262
\issue 4
\pages 442--451
\crossref{https://doi.org/10.1007/s10958-022-05826-8}
Linking options:
  • https://www.mathnet.ru/eng/fpm1867
  • https://www.mathnet.ru/eng/fpm/v23/i1/p75
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025