Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2019, Volume 22, Issue 5, Pages 243–258 (Mi fpm1850)  

Rings on vector Abelian groups

E. I. Kompantsevaab

a Financial University under the Government of the Russian Federation, Moscow, Russia
b Moscow State Pedagogical Institute, Moscow, Russia
References:
Abstract: A multiplication on an Abelian group $G$ is a homomorphism $\mu\colon G\otimes G\rightarrow G$. An Abelian group $G$ with a multiplication on it is called a ring on the group $G$. R. A. Beaumont and D. A. Lawver have formulated the problem of studying semisimple groups. An Abelian group is said to be semisimple if there exists a semisimple associative ring on it. Semisimple groups are described in the class of vector Abelian nonmeasurable groups. It is also shown that if a set $I$ is nonmeasurable, $G=\prod\limits_{i \in I} A_i$ is a reduced vector Abelian group, and $\mu$ is a multiplication on $G$, then $\mu$ is determined by its restriction on the sum $\bigoplus\limits_{i\in I} A_i$; this statement is incorrect if the set $I$ is measurable or the group $G$ is not reduced.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 259, Issue 4, Pages 552–562
DOI: https://doi.org/10.1007/s10958-021-05646-2
Document Type: Article
UDC: 512.541
Language: Russian
Citation: E. I. Kompantseva, “Rings on vector Abelian groups”, Fundam. Prikl. Mat., 22:5 (2019), 243–258; J. Math. Sci., 259:4 (2021), 552–562
Citation in format AMSBIB
\Bibitem{Kom19}
\by E.~I.~Kompantseva
\paper Rings on vector Abelian groups
\jour Fundam. Prikl. Mat.
\yr 2019
\vol 22
\issue 5
\pages 243--258
\mathnet{http://mi.mathnet.ru/fpm1850}
\transl
\jour J. Math. Sci.
\yr 2021
\vol 259
\issue 4
\pages 552--562
\crossref{https://doi.org/10.1007/s10958-021-05646-2}
Linking options:
  • https://www.mathnet.ru/eng/fpm1850
  • https://www.mathnet.ru/eng/fpm/v22/i5/p243
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:170
    Full-text PDF :86
    References:22
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024