Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2019, Volume 22, Issue 4, Pages 167–188 (Mi fpm1823)  

The group of quotients of the semigroup of invertible nonnegative matrices over local rings

V. V. Nemiro

Moscow State University, Moscow, Russia
References:
Abstract: In this paper, we prove that for a linearly ordered local ring $R$ with $1/2$ the group of quotients of the semigroup of invertible nonnegative matrices $\mathrm G_n(R)$ for $n \geq 3$ coincides with the group $\mathrm{GL}_n(R)$.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 257, Issue 6, Pages 860–875
DOI: https://doi.org/10.1007/s10958-021-05526-9
Document Type: Article
UDC: 512.534.7+512.555
Language: Russian
Citation: V. V. Nemiro, “The group of quotients of the semigroup of invertible nonnegative matrices over local rings”, Fundam. Prikl. Mat., 22:4 (2019), 167–188; J. Math. Sci., 257:6 (2021), 860–875
Citation in format AMSBIB
\Bibitem{Nem19}
\by V.~V.~Nemiro
\paper The group of quotients of the semigroup of invertible nonnegative matrices over local rings
\jour Fundam. Prikl. Mat.
\yr 2019
\vol 22
\issue 4
\pages 167--188
\mathnet{http://mi.mathnet.ru/fpm1823}
\transl
\jour J. Math. Sci.
\yr 2021
\vol 257
\issue 6
\pages 860--875
\crossref{https://doi.org/10.1007/s10958-021-05526-9}
Linking options:
  • https://www.mathnet.ru/eng/fpm1823
  • https://www.mathnet.ru/eng/fpm/v22/i4/p167
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:208
    Full-text PDF :84
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024