Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2019, Volume 22, Issue 4, Pages 129–136 (Mi fpm1820)  

On the cardinality of relator sets of groups $F/\prod [N_i,N_j]$

O. V. Kulikovaa, A. Yu. Olshanskiiba

a Moscow State University, Moscow, Russia
b Vanderbilt University, Nashville, U.S.A.
References:
Abstract: The present paper generalizes the results of our paper "On the finite presentability of the group $F/[M,N]$" to an arbitrary family of normal subgroups $\{N_i \mid i\in I\}$ in a free group $F$. We obtain conditions for finite presentability of the quotient group $F/\prod [N_i,N_j]$. In both papers, the proof of the main result is based on the properties of verbal wreath products introduced by Alfred Lvovich Shmel'kin.
Funding agency Grant number
Russian Foundation for Basic Research 15-01-05823_а
National Science Foundation DMS-1500180
This paper was supported by RFBR 15-01-05823; the research of the second author was also supported by NSF DMS-1500180.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 257, Issue 6, Pages 834–838
DOI: https://doi.org/10.1007/s10958-021-05523-y
Document Type: Article
UDC: 512.543.16
Language: Russian
Citation: O. V. Kulikova, A. Yu. Olshanskii, “On the cardinality of relator sets of groups $F/\prod [N_i,N_j]$”, Fundam. Prikl. Mat., 22:4 (2019), 129–136; J. Math. Sci., 257:6 (2021), 834–838
Citation in format AMSBIB
\Bibitem{KulOls19}
\by O.~V.~Kulikova, A.~Yu.~Olshanskii
\paper On the cardinality of relator sets of groups $F/\prod [N_i,N_j]$
\jour Fundam. Prikl. Mat.
\yr 2019
\vol 22
\issue 4
\pages 129--136
\mathnet{http://mi.mathnet.ru/fpm1820}
\transl
\jour J. Math. Sci.
\yr 2021
\vol 257
\issue 6
\pages 834--838
\crossref{https://doi.org/10.1007/s10958-021-05523-y}
Linking options:
  • https://www.mathnet.ru/eng/fpm1820
  • https://www.mathnet.ru/eng/fpm/v22/i4/p129
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024