|
Fundamentalnaya i Prikladnaya Matematika, 2019, Volume 22, Issue 4, Pages 101–114
(Mi fpm1818)
|
|
|
|
Tame and wild automorphisms of differential polynomial algebras of rank $2$
B. A. Duisengaliyevaa, A. S. Naurazbekovaa, U. U. Umirbaevb a L. N. Gumilyov Eurasian National University, Astana, 010008, Kazakhstan
b Wayne State University, Detroit, MI 48202, USA
Abstract:
It is proved that the tame automorphism group of a differential polynomial algebra $k\{x,y\}$ over a field $k$ of characteristic $0$ in two variables $x$, $y$ with $m$ commuting derivations $\delta_1, \ldots, \delta_m$ is a free product with amalgamation. An example of a wild automorphism of the algebra $k\{x,y\}$ in the case of $m\geq 2$ derivations is constructed.
Citation:
B. A. Duisengaliyeva, A. S. Naurazbekova, U. U. Umirbaev, “Tame and wild automorphisms of differential polynomial algebras of rank $2$”, Fundam. Prikl. Mat., 22:4 (2019), 101–114; J. Math. Sci., 257:6 (2021), 814–824
Linking options:
https://www.mathnet.ru/eng/fpm1818 https://www.mathnet.ru/eng/fpm/v22/i4/p101
|
Statistics & downloads: |
Abstract page: | 265 | Full-text PDF : | 147 | References: | 29 |
|