Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2019, Volume 22, Issue 4, Pages 75–100 (Mi fpm1817)  

This article is cited in 1 scientific paper (total in 1 paper)

Algebraic geometry over algebraic structures. VIII. Geometric equivalences and special classes of algebraic structures

E. Yu. Daniyarovaa, A. G. Myasnikovb, V. N. Remeslennikova

a Sobolev Institute of Mathematics, Omsk, Russia
b Schaefer School of Engineering and Science, Department of Mathematical Sciences, Stevens Institute of Technology, Hoboken, USA
Full-text PDF (342 kB) Citations (1)
References:
Abstract: This paper belongs to our series of works on algebraic geometry over arbitrary algebraic structures. In this one, there will be investigated seven equivalences (namely: geometrical, universal geometrical, quasi-equational, universal, elementary, and combinations thereof) in specific classes of algebraic structures (equationally Noetherian, $\mathrm{q}_\omega$-compact, $\mathrm{u}_\omega$-compact, equational domains, equational co-domains, etc.). The main questions are the following: (1) Which equivalences coincide inside a given class $\mathbf K$, which do not? (2) With respect to which equivalences a given class $\mathbf K$ is invariant, with respect to which it is not?
Funding agency Grant number
Russian Science Foundation 17-11-01117
The results of this paper were obtained with support of RSF grant (project No. 17-11-01117).
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 257, Issue 6, Pages 797–813
DOI: https://doi.org/10.1007/s10958-021-05520-1
Document Type: Article
UDC: 510.67+512.71
Language: Russian
Citation: E. Yu. Daniyarova, A. G. Myasnikov, V. N. Remeslennikov, “Algebraic geometry over algebraic structures. VIII. Geometric equivalences and special classes of algebraic structures”, Fundam. Prikl. Mat., 22:4 (2019), 75–100; J. Math. Sci., 257:6 (2021), 797–813
Citation in format AMSBIB
\Bibitem{DanMyaRem19}
\by E.~Yu.~Daniyarova, A.~G.~Myasnikov, V.~N.~Remeslennikov
\paper Algebraic geometry over algebraic structures. VIII. Geometric equivalences and special classes of algebraic structures
\jour Fundam. Prikl. Mat.
\yr 2019
\vol 22
\issue 4
\pages 75--100
\mathnet{http://mi.mathnet.ru/fpm1817}
\transl
\jour J. Math. Sci.
\yr 2021
\vol 257
\issue 6
\pages 797--813
\crossref{https://doi.org/10.1007/s10958-021-05520-1}
Linking options:
  • https://www.mathnet.ru/eng/fpm1817
  • https://www.mathnet.ru/eng/fpm/v22/i4/p75
    Cycle of papers
    This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:339
    Full-text PDF :127
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024