Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2018, Volume 22, Issue 3, Pages 83–90 (Mi fpm1805)  

Ruin probability for a Gaussian process with variance attaining its maximum on discrete sets

S. G. Kobelkov

Lomonosov Moscow State University, Moscow, Russia
References:
Abstract: Ruin probability for a Gaussian locally stationary process is considered in the case where the process variance attains its maximum in a finite number of points. The double sum method is applied to calculate exact asymptotics of the corresponding probability. Also, we consider a family of processes with variance that has a countable set of maximum points containing a limit point.
English version:
Journal of Mathematical Sciences (New York), 2021, Volume 254, Issue 4, Pages 504–509
DOI: https://doi.org/10.1007/s10958-021-05321-6
Document Type: Article
UDC: 519.218
Language: Russian
Citation: S. G. Kobelkov, “Ruin probability for a Gaussian process with variance attaining its maximum on discrete sets”, Fundam. Prikl. Mat., 22:3 (2018), 83–90; J. Math. Sci., 254:4 (2021), 504–509
Citation in format AMSBIB
\Bibitem{Kob18}
\by S.~G.~Kobelkov
\paper Ruin probability for a~Gaussian process with variance attaining its maximum on discrete sets
\jour Fundam. Prikl. Mat.
\yr 2018
\vol 22
\issue 3
\pages 83--90
\mathnet{http://mi.mathnet.ru/fpm1805}
\transl
\jour J. Math. Sci.
\yr 2021
\vol 254
\issue 4
\pages 504--509
\crossref{https://doi.org/10.1007/s10958-021-05321-6}
Linking options:
  • https://www.mathnet.ru/eng/fpm1805
  • https://www.mathnet.ru/eng/fpm/v22/i3/p83
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:200
    Full-text PDF :100
    References:39
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024