Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2018, Volume 22, Issue 1, Pages 99–110 (Mi fpm1782)  

This article is cited in 1 scientific paper (total in 1 paper)

Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a multivalued mapping

A. A. Vasil'eva

Moscow State University, Moscow, Russia
Full-text PDF (165 kB) Citations (1)
References:
Abstract: Let $S_F$ be the set of continuous bounded selections from the set-valued mapping $F\colon T \rightarrow 2^H$ with nonempty convex closed values; here $T$ is a paracompact Hausdorff topological space, and $H$ is a Hilbert space. In this paper, we obtain a criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set $S_F$ in $C(T,H)$.
Funding agency Grant number
Russian Foundation for Basic Research 16-01-00295_а
This research was carried out with financial support from the Russian Science Foundation, project No. 14-50-00005.
English version:
Journal of Mathematical Sciences (New York), 2020, Volume 250, Issue 3, Pages 454–462
DOI: https://doi.org/10.1007/s10958-020-05025-3
Document Type: Article
UDC: 515.126.83
Language: Russian
Citation: A. A. Vasil'eva, “Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a multivalued mapping”, Fundam. Prikl. Mat., 22:1 (2018), 99–110; J. Math. Sci., 250:3 (2020), 454–462
Citation in format AMSBIB
\Bibitem{Vas18}
\by A.~A.~Vasil'eva
\paper Criterion for the existence of a $1$-Lipschitz selection from the metric projection onto the set of continuous selections from a~multivalued mapping
\jour Fundam. Prikl. Mat.
\yr 2018
\vol 22
\issue 1
\pages 99--110
\mathnet{http://mi.mathnet.ru/fpm1782}
\transl
\jour J. Math. Sci.
\yr 2020
\vol 250
\issue 3
\pages 454--462
\crossref{https://doi.org/10.1007/s10958-020-05025-3}
Linking options:
  • https://www.mathnet.ru/eng/fpm1782
  • https://www.mathnet.ru/eng/fpm/v22/i1/p99
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:277
    Full-text PDF :113
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024