Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2016, Volume 21, Issue 6, Pages 93–113 (Mi fpm1770)  

Refinement of Novikov–Betti numbers and of Novikov homology provided by an angle valued map

D. Burghelea

Department of Mathematics, The Ohio State University, Columbus, OH 43210, USA
References:
Abstract: To a pair $(X,f)$, $X$ compact ANR and $f\colon X\to \mathbb S^1$ a continuous angle valued map, $\kappa$ a field, and a nonnegative integer $r$, one assigns a finite configuration of complex numbers $z$ with multiplicities $\delta^f_r(z)$ and a finite configuration of free $\kappa[t^{-1}, t]$-modules $\hat \delta^f_r$ of rank $\delta^ f_r(z)$ indexed by the same numbers $z$. This is in analogy with the configuration of eigenvalues and of generalized eigenspaces of a linear operator in a finite-dimensional complex vector space. The configuration $\delta^f_r$ refines the Novikov–Betti number in dimension $r$ and the configuration $\hat \delta^f_r$ refines the Novikov homology in dimension $r$ associated with the cohomology class defined by $f$. In the case of the field $\kappa= \mathbb C$, the configuration $\hat \delta^f_r$ provides by “von-Neumann completion” of a configuration $\hat{\hat \delta}^f_r$ of mutually orthogonal closed Hilbert submodules of the $L_2$-homology of the infinite cyclic cover of $X$ determined by the map $f$, which is an $L^\infty(\mathbb S^1)$-Hilbert module.
English version:
Journal of Mathematical Sciences (New York), 2020, Volume 248, Issue 6, Pages 728–742
DOI: https://doi.org/10.1007/s10958-020-04908-9
Document Type: Article
UDC: 515.142
Language: Russian
Citation: D. Burghelea, “Refinement of Novikov–Betti numbers and of Novikov homology provided by an angle valued map”, Fundam. Prikl. Mat., 21:6 (2016), 93–113; J. Math. Sci., 248:6 (2020), 728–742
Citation in format AMSBIB
\Bibitem{Bur16}
\by D.~Burghelea
\paper Refinement of Novikov--Betti numbers and of Novikov homology provided by an angle valued map
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 6
\pages 93--113
\mathnet{http://mi.mathnet.ru/fpm1770}
\transl
\jour J. Math. Sci.
\yr 2020
\vol 248
\issue 6
\pages 728--742
\crossref{https://doi.org/10.1007/s10958-020-04908-9}
Linking options:
  • https://www.mathnet.ru/eng/fpm1770
  • https://www.mathnet.ru/eng/fpm/v21/i6/p93
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :114
    References:29
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024