Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2016, Volume 21, Issue 6, Pages 3–63 (Mi fpm1767)  

On the uniformly proper classification of open manifolds

J. Eichhorn

Institut für Mathematik und Informatik, Walter-Rathenau-Strasse 47, D-17487 Greifswald, Germany
References:
Abstract: We give a brief account on the uniformly proper classification of open manifolds, i.e., the classification under bounded, uniformly proper maps. The small category of diffeomorphism classes of open $n$-manifolds has uncountably many homotopy types, $n\ge2$. Our main approach consists in splitting this set into generalized components and then try to classify these components and thereafter the elements inside a component. To define these components, we introduce Gromov–Hausdorff and Lipschitz metrizable uniform structures and corresponding $\mathrm{GH}$- and $\mathrm{L}$-cohomologies. The $\mathrm{GH}$-components are particularly appropriate to introduce geometric bordism theory for open manifolds, the $\mathrm{L}$-components are appropriate to establish surgery. We present independent generators for the bordism groups. The fundamental contributions of Farrell, Wagoner, Siebenmann, Maumary, and Taylor play a decisive role. In our approach, we suppose the manifolds to be endowed with a metric of bounded geometry and restrict ourselves to bounded uniformly proper morphisms. Finally, we discuss the question under which conditions bounded geometry and uniform properness are preserved by surgery, and sketch some proper surgery groups.
English version:
Journal of Mathematical Sciences (New York), 2020, Volume 248, Issue 6, Pages 668–708
DOI: https://doi.org/10.1007/s10958-020-04905-y
Document Type: Article
UDC: 517.988.26+517.983.37
Language: Russian
Citation: J. Eichhorn, “On the uniformly proper classification of open manifolds”, Fundam. Prikl. Mat., 21:6 (2016), 3–63; J. Math. Sci., 248:6 (2020), 668–708
Citation in format AMSBIB
\Bibitem{Eic16}
\by J.~Eichhorn
\paper On the uniformly proper classification of open manifolds
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 6
\pages 3--63
\mathnet{http://mi.mathnet.ru/fpm1767}
\transl
\jour J. Math. Sci.
\yr 2020
\vol 248
\issue 6
\pages 668--708
\crossref{https://doi.org/10.1007/s10958-020-04905-y}
Linking options:
  • https://www.mathnet.ru/eng/fpm1767
  • https://www.mathnet.ru/eng/fpm/v21/i6/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:223
    Full-text PDF :122
    References:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024