Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2016, Volume 21, Issue 3, Pages 217–231 (Mi fpm1743)  

On $k$-transitivity conditions of a product of regular permutation groups

A. V. Toktarev

Lomonosov Moscow State University
References:
Abstract: The paper analyses the product of $m$ regular permutation groups ${G_1}\cdot\ldots\cdot{G_{m}}$, where $m \geq 2 $ is natural number. Each of regular permutation groups is the subgroup of symmetric permutation group $S(\Omega)$ of degree $|\Omega|$ for the set $\Omega$. M. M. Glukhov proved that for $k=2$ and $m=2$, $2$-transitivity of the product ${G_1}\cdot{G_{2}}$ is equivalent to the absence of zeros in the corresponding square matrix with number of rows and columns equal to $|\Omega|-1$. Also by M. M. Glukhov necessary conditions of $2$-transitivity of such product of regular permutation groups are given.
In this paper, we consider the general case for any natural $m$ and $k$ such that $m \geq 2 $ and $k \geq 2 $. It is proved that $k$-transitivity of product of regular permutation groups ${G_1}\cdot\ldots\cdot{G_{m}}$ is equivalent to the absence of zeros in the square matrix with number of rows and columns equal to $(|\Omega | - 1)!/(|\Omega | - k)!$. We obtain correlation between the number of arcs corresponding to this matrix and a natural number $ l $ such that the product $(PsQt)^{l}$ is $2$-transitive, where $P,Q \subseteq S(\Omega )$ are some regular permutation groups and permutation $st$ is $(|\Omega | - 1)$-loop. We provide an example of the building of AES ciphers such that their round transformation are $ k $-transitive on a number of rounds.
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 237, Issue 3, Pages 485–495
DOI: https://doi.org/10.1007/s10958-019-04173-5
Document Type: Article
UDC: 512.542.72
Language: Russian
Citation: A. V. Toktarev, “On $k$-transitivity conditions of a product of regular permutation groups”, Fundam. Prikl. Mat., 21:3 (2016), 217–231; J. Math. Sci., 237:3 (2019), 485–495
Citation in format AMSBIB
\Bibitem{Tok16}
\by A.~V.~Toktarev
\paper On $k$-transitivity conditions of a product of regular permutation groups
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 3
\pages 217--231
\mathnet{http://mi.mathnet.ru/fpm1743}
\transl
\jour J. Math. Sci.
\yr 2019
\vol 237
\issue 3
\pages 485--495
\crossref{https://doi.org/10.1007/s10958-019-04173-5}
Linking options:
  • https://www.mathnet.ru/eng/fpm1743
  • https://www.mathnet.ru/eng/fpm/v21/i3/p217
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:338
    Full-text PDF :108
    References:31
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024