Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2016, Volume 21, Issue 3, Pages 73–106 (Mi fpm1735)  

This article is cited in 4 scientific papers (total in 4 papers)

Universal equivalence of general and special linear groups over fields

E. I. Bunina, G. A. Kaleeva

Lomonosov Moscow State University
Full-text PDF (309 kB) Citations (4)
References:
Abstract: In this paper, we study universal equivalence of general and special linear groups over fields. We give the following criterion for this relation to hold: two groups $\mathbf G_n(K)$ and $\mathbf G_m(L)$ ($\mathbf G=\mathrm{GL}, \mathrm{SL}$, $K$ and $L$ are infinite fields) are universally equivalent if and only if $n=m$ and the fields $K$ and $L$ are universally equivalent.
Funding agency Grant number
Russian Science Foundation 16-11-10013
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 237, Issue 3, Pages 387–409
DOI: https://doi.org/10.1007/s10958-019-04165-5
Document Type: Article
UDC: 510.67+512.54.0+512.643
Language: Russian
Citation: E. I. Bunina, G. A. Kaleeva, “Universal equivalence of general and special linear groups over fields”, Fundam. Prikl. Mat., 21:3 (2016), 73–106; J. Math. Sci., 237:3 (2019), 387–409
Citation in format AMSBIB
\Bibitem{BunKal16}
\by E.~I.~Bunina, G.~A.~Kaleeva
\paper Universal equivalence of general and special linear groups over fields
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 3
\pages 73--106
\mathnet{http://mi.mathnet.ru/fpm1735}
\transl
\jour J. Math. Sci.
\yr 2019
\vol 237
\issue 3
\pages 387--409
\crossref{https://doi.org/10.1007/s10958-019-04165-5}
Linking options:
  • https://www.mathnet.ru/eng/fpm1735
  • https://www.mathnet.ru/eng/fpm/v21/i3/p73
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:326
    Full-text PDF :188
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024