Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2016, Volume 21, Issue 3, Pages 39–56 (Mi fpm1733)  

This article is cited in 3 scientific papers (total in 3 papers)

Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$

A. Kh. Bikulova, A. P. Zubarevbc

a N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow
b Samara State Aerospace University
c Samara State Transport University
Full-text PDF (197 kB) Citations (3)
References:
Abstract: We construct new bases of real functions from $L^{2}(B_{r})$ and from $L^{2}(\mathbb{Q}_{p})$. These functions are eigenfunctions of the $p$-adic pseudo-differential Vladimirov operator, which is defined on a compact set $B_{r}\subset\mathbb{Q}_{p}$ of the field of $p$-adic numbers $\mathbb{Q}_{p}$ or, respectively, on the entire field $\mathbb{Q}_{p}$. A relation between the basis of functions from $L^{2}(\mathbb{Q}_{p})$ and the basis of $p$-adic wavelets from $L^{2}(\mathbb{Q}_{p})$ is found. As an application, we consider the solution of the Cauchy problem with the initial condition on a compact set for a pseudo-differential equation with a general pseudo-differential operator that is diagonal in the basis constructed.
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 237, Issue 3, Pages 362–374
DOI: https://doi.org/10.1007/s10958-019-04163-7
Document Type: Article
UDC: 512.625+517.518.34+517.983.37+517.984.57
Language: Russian
Citation: A. Kh. Bikulov, A. P. Zubarev, “Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$”, Fundam. Prikl. Mat., 21:3 (2016), 39–56; J. Math. Sci., 237:3 (2019), 362–374
Citation in format AMSBIB
\Bibitem{BikZub16}
\by A.~Kh.~Bikulov, A.~P.~Zubarev
\paper Complete systems of eigenfunctions of the Vladimirov operator in $L^{2}(B_r)$ and $L^{2}(\mathbb{Q}_{p})$
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 3
\pages 39--56
\mathnet{http://mi.mathnet.ru/fpm1733}
\transl
\jour J. Math. Sci.
\yr 2019
\vol 237
\issue 3
\pages 362--374
\crossref{https://doi.org/10.1007/s10958-019-04163-7}
Linking options:
  • https://www.mathnet.ru/eng/fpm1733
  • https://www.mathnet.ru/eng/fpm/v21/i3/p39
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:342
    Full-text PDF :130
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024