|
Fundamentalnaya i Prikladnaya Matematika, 2016, Volume 21, Issue 2, Pages 253–256
(Mi fpm1729)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Bezout rings, annihilators, and diagonalizability
A. A. Tuganbaevab a Lomonosov Moscow State University
b National Research University "Moscow Power Engineering Institute"
Abstract:
Let $A$ be a right invariant ring. If $A$ is a diagonalizable ring or an exchange Bezout ring, then $B + r(M) = r(M/MB)$ for every finitely generated right $A$-module $M$ and any ideal $B$ of the ring $A$.
Citation:
A. A. Tuganbaev, “Bezout rings, annihilators, and diagonalizability”, Fundam. Prikl. Mat., 21:2 (2016), 253–256; J. Math. Sci., 237:2 (2019), 329–331
Linking options:
https://www.mathnet.ru/eng/fpm1729 https://www.mathnet.ru/eng/fpm/v21/i2/p253
|
Statistics & downloads: |
Abstract page: | 261 | Full-text PDF : | 121 | References: | 40 |
|