Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2016, Volume 21, Issue 2, Pages 3–35 (Mi fpm1718)  

This article is cited in 3 scientific papers (total in 3 papers)

Primitive and almost primitive elements of Schreier varieties

V. A. Artamonov, A. V. Klimakov, A. A. Mikhalev, A. V. Mikhalev

Lomonosov Moscow State University
Full-text PDF (306 kB) Citations (3)
References:
Abstract: A variety of linear algebras is said to be Schreier if any subalgebra of a free algebra of this variety is free. A system of elements of a free algebra is primitive if there is a complement of this system with respect to a free generating set of the free algebra. An element of a free algebra of a Schreier variety is said to be almost primitive if it is not primitive in the free algebra, but it is a primitive element of any subalgebra that contains it. This survey article is devoted to the study of primitive and almost primitive elements of Schreier varieties.
Funding agency Grant number
Russian Science Foundation 16-11-10013
English version:
Journal of Mathematical Sciences (New York), 2019, Volume 237, Issue 2, Pages 157–179
DOI: https://doi.org/10.1007/s10958-019-4148-2
Bibliographic databases:
Document Type: Article
UDC: 512.554+512.554.33+512.554.34+512.554.37+512.554.38+512.572,512.573+510.53+512.543+512.544.42+512.544.43
Language: Russian
Citation: V. A. Artamonov, A. V. Klimakov, A. A. Mikhalev, A. V. Mikhalev, “Primitive and almost primitive elements of Schreier varieties”, Fundam. Prikl. Mat., 21:2 (2016), 3–35; J. Math. Sci., 237:2 (2019), 157–179
Citation in format AMSBIB
\Bibitem{ArtKliMik16}
\by V.~A.~Artamonov, A.~V.~Klimakov, A.~A.~Mikhalev, A.~V.~Mikhalev
\paper Primitive and almost primitive elements of Schreier varieties
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 2
\pages 3--35
\mathnet{http://mi.mathnet.ru/fpm1718}
\elib{https://elibrary.ru/item.asp?id=32057805}
\transl
\jour J. Math. Sci.
\yr 2019
\vol 237
\issue 2
\pages 157--179
\crossref{https://doi.org/10.1007/s10958-019-4148-2}
Linking options:
  • https://www.mathnet.ru/eng/fpm1718
  • https://www.mathnet.ru/eng/fpm/v21/i2/p3
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:451
    Full-text PDF :223
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024