Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2016, Volume 21, Issue 1, Pages 37–48 (Mi fpm1699)  

This article is cited in 1 scientific paper (total in 1 paper)

On $p$-adic approximation of sums of binomial coefficients

R. R. Aidagulova, M. A. Alekseyevb

a Lomonosov Moscow State University
b George Washington University
Full-text PDF (167 kB) Citations (1)
References:
Abstract: We propose higher-order generalizations of Jacobsthal's $p$-adic approximation for binomial coefficients. Our results imply explicit formulas for linear combinations of binomial coefficients $\binom{ip}{p}$ ($i=1,2,\ldots$) that are divisible by arbitrarily large powers of prime $p$.
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 233, Issue 5, Pages 626–634
DOI: https://doi.org/10.1007/s10958-018-3948-0
Bibliographic databases:
Document Type: Article
UDC: 511.172
Language: Russian
Citation: R. R. Aidagulov, M. A. Alekseyev, “On $p$-adic approximation of sums of binomial coefficients”, Fundam. Prikl. Mat., 21:1 (2016), 37–48; J. Math. Sci., 233:5 (2018), 626–634
Citation in format AMSBIB
\Bibitem{AidAle16}
\by R.~R.~Aidagulov, M.~A.~Alekseyev
\paper On $p$-adic approximation of sums of binomial coefficients
\jour Fundam. Prikl. Mat.
\yr 2016
\vol 21
\issue 1
\pages 37--48
\mathnet{http://mi.mathnet.ru/fpm1699}
\transl
\jour J. Math. Sci.
\yr 2018
\vol 233
\issue 5
\pages 626--634
\crossref{https://doi.org/10.1007/s10958-018-3948-0}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85050975823}
Linking options:
  • https://www.mathnet.ru/eng/fpm1699
  • https://www.mathnet.ru/eng/fpm/v21/i1/p37
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024