|
Fundamentalnaya i Prikladnaya Matematika, 2016, Volume 21, Issue 1, Pages 37–48
(Mi fpm1699)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
On $p$-adic approximation of sums of binomial coefficients
R. R. Aidagulova, M. A. Alekseyevb a Lomonosov Moscow State University
b George Washington University
Abstract:
We propose higher-order generalizations of Jacobsthal's $p$-adic approximation for binomial coefficients. Our results imply explicit formulas for linear combinations of binomial coefficients $\binom{ip}{p}$ ($i=1,2,\ldots$) that are divisible by arbitrarily large powers of prime $p$.
Citation:
R. R. Aidagulov, M. A. Alekseyev, “On $p$-adic approximation of sums of binomial coefficients”, Fundam. Prikl. Mat., 21:1 (2016), 37–48; J. Math. Sci., 233:5 (2018), 626–634
Linking options:
https://www.mathnet.ru/eng/fpm1699 https://www.mathnet.ru/eng/fpm/v21/i1/p37
|
|