|
Fundamentalnaya i Prikladnaya Matematika, 2015, Volume 20, Issue 6, Pages 229–235
(Mi fpm1695)
|
|
|
|
On homogeneous mappings of finitely presented modules over the ring of polyadic numbers
D. S. Chistyakov Moscow State Pedagogical University
Abstract:
A semigroup $(R,\cdot)$ is said to be a UA-ring if there exists a unique binary operation $+$ making $(R,\cdot,+)$ into a ring. We study finitely presented $\hat{Z}$-modules with UA-rings of endomorphisms.
Citation:
D. S. Chistyakov, “On homogeneous mappings of finitely presented modules over the ring of polyadic numbers”, Fundam. Prikl. Mat., 20:6 (2015), 229–235; J. Math. Sci., 233:1 (2018), 152–156
Linking options:
https://www.mathnet.ru/eng/fpm1695 https://www.mathnet.ru/eng/fpm/v20/i6/p229
|
|