Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2015, Volume 20, Issue 6, Pages 207–228 (Mi fpm1694)  

Groups in which the normal closures of cyclic subgroups have bounded finite Hirsch–Zaitsev rank

L. A. Kurdachenkoa, N. N. Semkob

a Dnepropetrovsk National University
b National State Tax Service University of Ukraine
References:
Abstract: In this paper, we study generalized soluble groups with restriction on normal closures of cyclic subgroups. A group $G$ is said to have finite Hirsch–Zaitsev rank if $G$ has an ascending series whose factors are either infinite cyclic or periodic and if the number of infinite cyclic factors are finite. It is not hard to see that the number of infinite cyclic factors in each of such series is an invariant of a group $G$. This invariant is called the Hirsch–Zaitsev rank of $G$ and will be denoted by $\mathbf r_{\mathrm{hz}}(G)$. We study the groups in which the normal closure of every cyclic subgroup has the Hirsch–Zaitsev rank at most $\mathbf b$ ($\mathbf b$ is some positive integer). For some natural restrictions we find a function $\mathbf k_1(\mathbf b)$ such that $\mathbf r_{\mathrm{hz}}([G/\mathrm{Tor}(G), G/\mathrm{Tor}(G)]) \leq \mathbf k_1(\mathbf b)$.
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 233, Issue 1, Pages 137–151
DOI: https://doi.org/10.1007/s10958-018-3930-x
Document Type: Article
UDC: 512.544
Language: Russian
Citation: L. A. Kurdachenko, N. N. Semko, “Groups in which the normal closures of cyclic subgroups have bounded finite Hirsch–Zaitsev rank”, Fundam. Prikl. Mat., 20:6 (2015), 207–228; J. Math. Sci., 233:1 (2018), 137–151
Citation in format AMSBIB
\Bibitem{KurSem15}
\by L.~A.~Kurdachenko, N.~N.~Semko
\paper Groups in which the normal closures of cyclic subgroups have bounded finite Hirsch--Zaitsev rank
\jour Fundam. Prikl. Mat.
\yr 2015
\vol 20
\issue 6
\pages 207--228
\mathnet{http://mi.mathnet.ru/fpm1694}
\transl
\jour J. Math. Sci.
\yr 2018
\vol 233
\issue 1
\pages 137--151
\crossref{https://doi.org/10.1007/s10958-018-3930-x}
Linking options:
  • https://www.mathnet.ru/eng/fpm1694
  • https://www.mathnet.ru/eng/fpm/v20/i6/p207
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024