|
Fundamentalnaya i Prikladnaya Matematika, 2015, Volume 20, Issue 6, Pages 43–64
(Mi fpm1687)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Semirings of continuous $(0,\infty]$-valued functions
E. M. Vechtomov, N. V. Shalaginova Vyatka State University
Abstract:
The semiring $C^{\infty}(X)$ of all continuous functions on an arbitrary topological space $X$ with values in the topological semiring $(0,\infty]$ is studied. General properties of semirings $C^\infty(X)$ are considered. Properties of lattices of ideals and congruences of semirings $C^{\infty}(X)$ over the $\mathrm{P}$-spaces $X$, the $\mathrm{F}$-spaces $X$, and the finite discrete spaces are proved.
Citation:
E. M. Vechtomov, N. V. Shalaginova, “Semirings of continuous $(0,\infty]$-valued functions”, Fundam. Prikl. Mat., 20:6 (2015), 43–64; J. Math. Sci., 233:1 (2018), 28–41
Linking options:
https://www.mathnet.ru/eng/fpm1687 https://www.mathnet.ru/eng/fpm/v20/i6/p43
|
Statistics & downloads: |
Abstract page: | 477 | Full-text PDF : | 120 | References: | 67 |
|