Fundamentalnaya i Prikladnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Journal history

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Fundam. Prikl. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Fundamentalnaya i Prikladnaya Matematika, 2015, Volume 20, Issue 5, Pages 17–29 (Mi fpm1665)  

This article is cited in 1 scientific paper (total in 1 paper)

Indecomposable $p$-local torsion-free groups with quadratic and cubic splitting fields

S. V. Vershina

Moscow State Pedagogical University
Full-text PDF (159 kB) Citations (1)
References:
Abstract: Indecomposable torsion-free $p$-local Abelian groups of finite rank with quadratic and cubic splitting field $K$ are characterized. As a consequence, for groups with quadratic splitting field $K$ it is proved that $K$-decomposable $p$-local torsion-free Abelian groups of finite rank are isomorphic if and only if their endomorphism rings are isomorphic.
English version:
Journal of Mathematical Sciences (New York), 2018, Volume 230, Issue 3, Pages 364–371
DOI: https://doi.org/10.1007/s10958-018-3741-0
Bibliographic databases:
Document Type: Article
UDC: 512.541
Language: Russian
Citation: S. V. Vershina, “Indecomposable $p$-local torsion-free groups with quadratic and cubic splitting fields”, Fundam. Prikl. Mat., 20:5 (2015), 17–29; J. Math. Sci., 230:3 (2018), 364–371
Citation in format AMSBIB
\Bibitem{Ver15}
\by S.~V.~Vershina
\paper Indecomposable $p$-local torsion-free groups with quadratic and cubic splitting fields
\jour Fundam. Prikl. Mat.
\yr 2015
\vol 20
\issue 5
\pages 17--29
\mathnet{http://mi.mathnet.ru/fpm1665}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3589140}
\transl
\jour J. Math. Sci.
\yr 2018
\vol 230
\issue 3
\pages 364--371
\crossref{https://doi.org/10.1007/s10958-018-3741-0}
Linking options:
  • https://www.mathnet.ru/eng/fpm1665
  • https://www.mathnet.ru/eng/fpm/v20/i5/p17
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Фундаментальная и прикладная математика
    Statistics & downloads:
    Abstract page:298
    Full-text PDF :124
    References:48
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024