|
Fundamentalnaya i Prikladnaya Matematika, 2015, Volume 20, Issue 2, Pages 113–124
(Mi fpm1644)
|
|
|
|
Base normal inductive dimension $\mathrm I$ of cubes
A. V. Karasseva, K. L. Kozlovb a Nipissing University, Canada
b Lomonosov Moscow State University
Abstract:
It is shown that $\{1,\infty\}$ is the set of possible base normal inductive dimensions $\mathrm I$ of the segment $I=[0,1]$ and $\{n,n+1,\dots,\infty\}$ is the set of possible base normal inductive dimensions $\mathrm I$ of the $n$-dimensional cubes $I^n$ for $n\geq2$.
Citation:
A. V. Karassev, K. L. Kozlov, “Base normal inductive dimension $\mathrm I$ of cubes”, Fundam. Prikl. Mat., 20:2 (2015), 113–124; J. Math. Sci., 223:6 (2017), 725–733
Linking options:
https://www.mathnet.ru/eng/fpm1644 https://www.mathnet.ru/eng/fpm/v20/i2/p113
|
Statistics & downloads: |
Abstract page: | 394 | Full-text PDF : | 137 | References: | 66 |
|